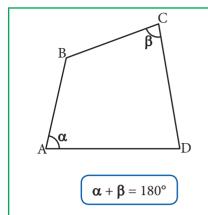
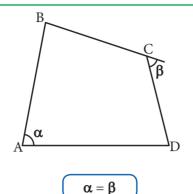
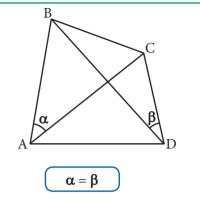


ÁNGULOS ASOCIADOS A LA CIRCUNFERENCIA

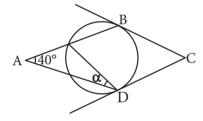

ÁNGULOS ASOCIADOS A LA CIRCUNFERENCIA


CUADRILÁTERO INSCRITO EN UN CIRCUNFERENCIA

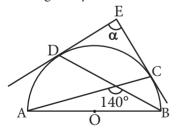

CUADRILÁTERO INSCRIPTIBLE

Entonces, ABCD es un cuadrilátero inscriptible

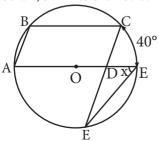
Entonces, ABCD es un cuadrilátero inscriptible



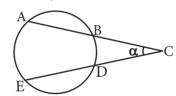
Entonces, ABCD es un cuadrilátero inscriptible


Trabajando en clase

Integral

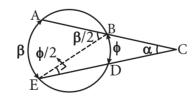

1. Calcula «α», si B y D son puntos de tangencia y ABCD es un romboide.

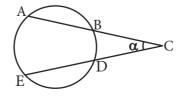
2. Calcula «**α**», si C y D son puntos de tangencia y AB es diámetro.



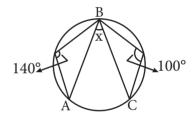
3. Si ABCD <u>es un romboide</u>. Calcula x, si <u>AE</u> es diámetro.

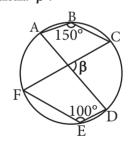
PUCP


R. Calcula «α», si m $\widehat{AE} = \beta$ y m $\widehat{BD} = \phi$.

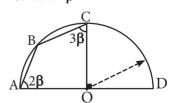

Resolución

Se traza \overline{BE} , entonces m $\angle BED$ = $\phi/2$ por ángulo inscrito y m $\angle ABE = \beta/2$ también por ángulo inscrito. En el Θ EBC se tiene por ángulo exterior


$$\alpha + \frac{\phi}{2} = \frac{\beta}{2} \& \alpha = \frac{\beta - \phi}{2}$$

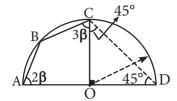

5. Calcula « α », si m $\widehat{AE} = 80^{\circ}$ y m $\widehat{BD} = 30^{\circ}$.

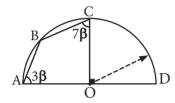
6. Calcula «x».



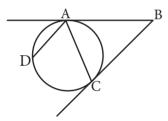
7. Calcula «**β**».

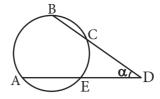
UNMSM


8. Calcula «β».

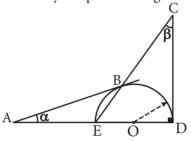

Resolución

Se traza $\overline{\text{CD}}$, se tiene un triángulo rectángulo isósceles. El IABCD está inscrito en la circunferencia, entonces:


$$2\beta + 3\beta + 45^{\circ} = 180^{\circ}$$
$$\beta = 27^{\circ}$$

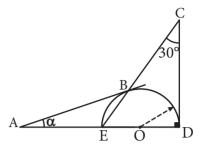

9. Calcula « β ». (\overline{AD} : Diámetro)

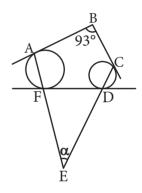
10. Calcula m∠DAC, si A y C son puntos de tangencia, además AD // BC y m∠ABC = 40°



11. Calcula « α », si AB = BE y m \widehat{BC} = 50°.

UNI


12. Calcula «α» en función de «β», si O es centro de la semicircunferencia y B es punto de tangencia.


Resolución

Se traza \overline{BD} , entonces m $\angle BDE$ = β y por ángulo seminscrito m $\angle ABE = \beta$.

Entonces: $\alpha + \beta = 90^{\circ} - \beta$ $\alpha = 90^{\circ} - 2\beta$ $A = 90^{\circ} - 2\beta$ $E = 0 \beta$ D 13. Calcula « α », si \overline{ED} es diámetro y « β » es punto de tangencia

14. Calcula «α», si A, C, D y F son puntos de tangencia.

