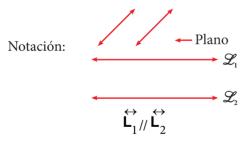


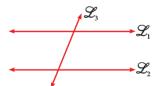
DES ENTRE RECTAS PARALELAS

Marco teórico

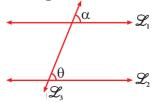
Dos columnas de una casa nos dan la idea de rectas paralelas.



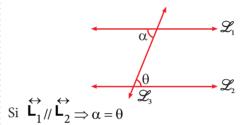
Los rieles del ferrocarril también nos da la idea de rectas paralelas.


Rectas paralelas

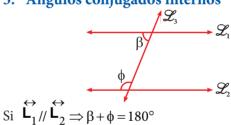
Son aquellas rectas que pertenecen a un mismo plano y que, al prolongarlas, no tendrían punto de contacto.


Notación: Se lee, recta $\, {f L}_1 \,$ paralela a la recta $\, {f L}_2 \, .$

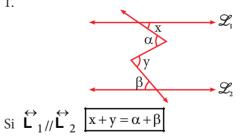
Nota:

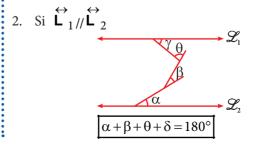

L₃: Recta transversal o secante

1. Ángulos correspondientes

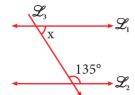


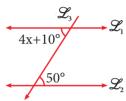
Si
$$\stackrel{\longleftrightarrow}{\mathbf{L}}_1 / / \stackrel{\longleftrightarrow}{\mathbf{L}}_2 \Rightarrow \alpha = \theta$$


2. Ángulos alternos internos

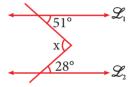

3. Ángulos conjugados internos

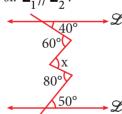
Propiedades entre rectas paralelas


Suma de las medidas de los ángulos que van a la derecha = Suma de las medidas de los ángulos que van a la izquierda

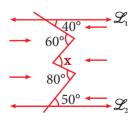

• Trabajando en Clase

Integral


1. Calcula "x", si: $\biguplus_{1} / / \biguplus_{2}$.


2. Calcula "x", si: $\stackrel{\longleftrightarrow}{\mathbf{L}}_1 / / \stackrel{\longleftrightarrow}{\mathbf{L}}_2$.

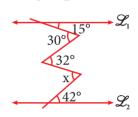
3. Dada el gráfico, calcula "x", si: $\stackrel{\longleftrightarrow}{\mathbf{L}_1} /\!\!/ \stackrel{\longleftrightarrow}{\mathbf{L}_2}$.



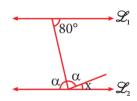
4. Calcula "x", si: $\overrightarrow{\mathbf{L}}_{1}/\!\!/ \overrightarrow{\mathbf{L}}_{2}$.

Resolución:

En la figura, por la propiedad del serrucho.

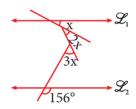


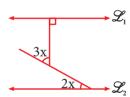
Suma de las medidad de los ángulos por la derecha = Suma de las medidas de los ángulos por la izquierda


$$40^{\circ} + x + 50^{\circ} = 60^{\circ} + 80^{\circ}$$

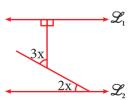
 $x + 90^{\circ} = 140^{\circ}$
 $x = 140^{\circ} - 90^{\circ}$

$$x = 50^{\circ}$$


5. Calcula "x", si: $\stackrel{\longleftrightarrow}{\mathbf{L}_1} / / \stackrel{\longleftrightarrow}{\mathbf{L}_2}$.


6. Calcula "x", si: $\stackrel{\longleftrightarrow}{\mathbf{L}}_1 / / \stackrel{\longleftrightarrow}{\mathbf{L}}_2$.

7. Calcula "x", si: $\stackrel{\longleftrightarrow}{\mathsf{L}}_1/\!/\stackrel{\longleftrightarrow}{\mathsf{L}}_2$.



8. Calcula "x", si $\leftarrow 1/1/1$ $\leftarrow 1/1$

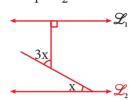
Resolución:

❖ En la figura por propiedad.

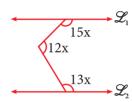
❖ Suma de la medidas de los ángulos externos
 = 180°

$$90^{\circ} + 3x + 2x = 180^{\circ}$$

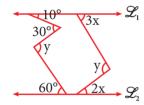
$$90^{\circ} + 5x = 180^{\circ}$$

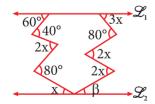

$$5x = 180^{\circ} - 90^{\circ}$$

$$5x = 90^{\circ}$$

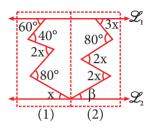

$$x = 18^{\circ}$$

Nos piden $x = 18^{\circ}$


9. Calcula "x", si: $\stackrel{\longleftrightarrow}{\mathbf{L}}_1/\!\!/\stackrel{\longleftrightarrow}{\mathbf{L}}_2$.


10. Calcula "x", si: $\stackrel{\longleftrightarrow}{\mathsf{L}_1} / / \stackrel{\longleftrightarrow}{\mathsf{L}_2}$.

11. Calcula "x", si: $\stackrel{\longleftrightarrow}{\mathsf{L}_1} / / \stackrel{\longleftrightarrow}{\mathsf{L}_2}$.



12. Calcula " β ", si: $\overrightarrow{\mathbf{L}}_1 /\!\!/ \overrightarrow{\mathbf{L}}_2$.

Resolución:

En la figura por la propiedad del serrucho (2 veces)

En (1):

$$40^{\circ} + 80^{\circ} = 60^{\circ} + 2x + x$$

$$120^{\circ} = 60^{\circ} + 3x$$

$$120^{\circ} - 60^{\circ} = 3x$$

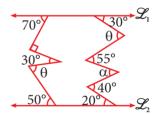
$$60^{\circ} = 3x$$

$$x = 20^{\circ}$$

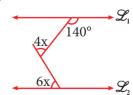
En (2):

$$3x + 2x + \beta = 80^{\circ} + 2x$$

$$3x + \beta = 80^{\circ}$$


$$3(20^{\circ}) + \beta = 80^{\circ}$$
; reemplazando x=20°

$$60^{\circ} + \beta = 80^{\circ}$$


$$\beta = 20^{\circ}$$

♦ Nos piden: $\beta = 20$

13. Si: $\stackrel{\longleftrightarrow}{\mathsf{L}}_1//\stackrel{\longleftrightarrow}{\mathsf{L}}_2$, calcula " α ".

14. Si: $\stackrel{\longleftrightarrow}{\mathbf{L}}_1 / / \stackrel{\longleftrightarrow}{\mathbf{L}}_2$, calcula "x".

