

Materiales Educativos GRATIS

FISICA

CUARTO

ANÁLISIS DIMENSIONAL II

DEFINICIÓN

Siguiendo con el estudio del análisis dimensional, en este capítulo veremos cómo calcular las ecuaciones dimensionales de algunas ecuaciones físicas, aplicando para ello nuevas propiedades y principios.

PROPIEDADES DE LAS ECUACIONES DIMENSIONALES PARTE II

- 1. La ecuación dimensional de todo ángulo, razón trigonométrica y, en general, de toda cantidad adimensional es uno.
 - $\lceil \text{sen}(53^{\circ}) \rceil = 1$
 - $\lceil \log(x) \rceil = 1$
 - [64°]=1
- 2. La ecuación dimensional del exponente de toda magnitud física es igual a uno.
 - (fuerza) $\frac{2V}{P}H = 2N$ se cumple

$$\left[\frac{2V}{P}H\right] = 1$$

•
$$9^{\frac{\text{FV}}{3x}} = 3 \text{ se cumple}$$

$$\left[\frac{\text{FV}}{3\text{x}}\right] = 1$$

PRINCIPIO DE HOMOGENEIDAD DIMENSIONAL (PHD)

En toda ecuación dimensionalmente correcta, los términos que se suman o se restan deben tener la misma ecuación dimensional.

Por ejemplo, si la siguiente ecuación es dimensionalmente correcta:

$$A + B = C$$

Entonces se debe cumplir que

$$[A] = [B] = [C]$$

Ejemplo:

Sabiendo que la siguiente expresión es dimensionalmente correcta: $H = a^F - b^P$

Donde F: fuerza y P: presión. Indica la ecuación dimensional de $\frac{a}{b}$. Del problema se cumple

$$[H] = [aF - bP]$$

Por el principio de homogeneidad

$$[H]=[aF]=[bP]$$

$$[H]=[a][F]=[b][P]$$

$$\begin{bmatrix} a \end{bmatrix} MLT^{-2} = \begin{bmatrix} b \end{bmatrix} ML^{-1}T^{-2}$$

$$\frac{\begin{bmatrix} a \end{bmatrix}}{\begin{bmatrix} b \end{bmatrix}} = \frac{ML^{-1}T^{-2}}{MLT^{-2}}$$

$$\therefore \frac{\begin{bmatrix} a \end{bmatrix}}{\begin{bmatrix} b \end{bmatrix}} = L^{-2}$$

TRABAJANDO EN CLASE

Integral

1. Si A representa el área, ¿cuál es la ecuación dimensional de x?

$$A \log(30) = \left[56.x^{1/2} \right]$$

Solución:

$$\left[A \right] \left[\log(30) \right] = \left[56 \right] \left[x^{\frac{1}{2}} \right]$$

$$L^2.1 = 1.[x]^{\frac{1}{2}}$$

$$|x| = L^4$$

2. Si P representa la presión, ¿cuál es la ecuación dimensional de Y?

$$5 - Y^2 = 36^{\circ} \frac{\log(452)}{P}$$

- a) $M^{-1/2}L^{1/2}T$ b) $ML^{1/2}$ d) $M^{-1}T^{1/2}$ e) $T^{1/2}$
- c) MT

- 3. Determina la ecuación dimensional de C si la siguiente ecuación es correcta:

$$mS = 6V \tan(3C/F)$$

m: masa; S: tiempo; V: volumen y F: fuerza.

- a) ML
- b) LT⁻²
- c) MLT⁻²

- d) LT
- e) MLT⁻¹

Determina la ecuación dimensional de A/B, si se sabe que v: velocidad y t: tiempo y además la siguiente ecuación es dimensionalmente correcta:

$$A = ve^{Bt^2}$$

- a) L^{-1}
- b) LT⁻¹
- c) L^2T

- d)L
- e) LT

UNMSM

Siendo m: masa y v: rapidez. Determina x.y si la energía cinética viene dada por la siguiente ecuación:

$$E_k = \frac{1}{2}m^x \cdot v^y$$

- a) 1
- c) 3

- d) 4
- e) 5

Solución:

Aplicando las dimensiones en cada término

$$\left[E_{k}\right] = \left[\frac{1}{2}\right] \left[m^{x}\right] \left[v^{y}\right]$$

$$\begin{bmatrix} \mathbf{E}_{\mathbf{k}} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \end{bmatrix} \begin{bmatrix} \mathbf{m} \end{bmatrix}^{\mathbf{x}} \begin{bmatrix} \mathbf{v} \end{bmatrix}^{\mathbf{y}}$$

$$ML^2T^{-2} = 1.M^x(LT^{-1})^y$$

$$ML^2T^{-2} = M^xL^yT^{-y}$$

Igualando magnitudes

$$M = M^x$$

$$\rightarrow x = 1$$

$$L^2 = L^y$$

$$\rightarrow$$
 y = 2

$$\therefore$$
 x.y = 2

6. Calcula el valor de x^y en la siguiente expresión di-9. La ecuación $A = \frac{F}{t} + B$ es dimensionalmente correcta.

$$v=\pi^2\,a^x\,t^y$$

Dónde: v es rapidez, a es área y t es tiempo.

- a) 5
- b) 4 e) 1

- d) 2
- 7. Calcula x y si la siguiente expresión es dimensionalmente correcta:

$$P = \log(23).\frac{m^y}{dt^x}$$

Si se sabe que P es la presión, d es la distancia, t es tiempo y m es masa.

- a) 1
- b) 2
- c) 3

- d) 4
- e) 0
- 8. Calcula $(x + 1)^z$ si la siguiente expresión es dimensionalmente correcta:

$$Psen75^{\circ} = 85d^{x}t^{z}.m$$

Si se sabe que:

P: potencia

d: distancia

t: tiempo

m: masa

- a) 27
- b) 28
- c) 1/27

- d) 1/28
- e) 1/29

Solución:

Aplicando la dimensionalidad a cada término.

$$[P \cdot Sen75^{\circ}] = [85d^{x} \cdot t^{z} \cdot m]$$

$$\begin{bmatrix}
P \underbrace{\underbrace{Sen75^{\circ}}_{1}} = \underbrace{\underbrace{85}}_{1} \underbrace{\begin{bmatrix} d^{x} \end{bmatrix}} \underbrace{\begin{bmatrix} t^{z} \end{bmatrix}} \cdot \underbrace{\begin{bmatrix} m \end{bmatrix}}$$

$$\Rightarrow \underbrace{\begin{bmatrix} P \end{bmatrix}} = \underbrace{\begin{bmatrix} d^{x} \end{bmatrix}} \cdot \underbrace{\begin{bmatrix} t^{z} \end{bmatrix}} \cdot \underbrace{\begin{bmatrix} m \end{bmatrix}}$$

Aplicando las propiedades del análisis dimensio-

$$\lceil P \rceil = \lceil d \rceil^x \lceil t \rceil^z \cdot \lceil m \rceil$$

Reemplazando las ecuaciones a cada término.

 $ML^2 T^{-3} = L^x.T^z M$

Igualando exponentes se tiene:

$$x = 2$$

$$z = -3$$

Luego reemplazando en $(x + 1)^z$

$$\therefore (x+1)^z = \frac{1}{27}$$

Si F representa la fuerza y t el tiempo, calcula la dimensión de B.

UNMSM 2013-II

c) MLT

- a) MLT⁻² d) MLT⁻³

- b) ML e) LT⁻²
- 10. Calcula $x^2 + y$ si un cuerpo es abandonado desde una cierta altura h, luego de un intervalo de tiempo adquiere una rapidez v. Si la aceleración de la gravedad viene dada por

$$g = \frac{1}{2}h^x v^y$$

- a) -1

- d) 3
- e) 1
- 11. En la ecuación $H = \left(\frac{a^2b^x}{2c^y}\right) \operatorname{sen}\theta$

dimensionalmente correctá, H es la altura, α es la rapidez, b es el radio y c es la aceleración. Determina x + y.

UNMSM 2013-II

- a) 1
- b) -1
- c) -2

c) MLT⁻²

- d) 0
- e) 2

UNI

12. Calcula $\begin{bmatrix} \underline{a} \\ \underline{c} \end{bmatrix}$ si la siguiente ecuación es correcta:

$$P = at^2 + c\rho$$

Dónde P es presión, t es tiempo y ρ es la densidad.

- a) MT⁻²
- b) ML⁻³
- d) $ML^{-3}T^{-2}$
- e) $L^{3}T^{-2}$

Solución:

Aplicando las E.D. para cada término

$$[P] = [at^2 + c\rho]$$

Por el principio de homogeneidad se tiene

$$[P] = [at^2] = [c\rho] \quad [P] = [a][t]^2 = [c][\rho]$$

De esta manera se cumple

- $\bullet \lceil P \rceil = \lceil a \rceil \lceil t \rceil^2$
- $ML^{-1}T^{-2} = \lceil a \rceil T^2$
- $\rightarrow \begin{bmatrix} a \end{bmatrix} = ML^{-1}T^{-4}$ $\bullet \begin{bmatrix} P \end{bmatrix} = \begin{bmatrix} c \end{bmatrix} \begin{bmatrix} \rho \end{bmatrix} \qquad ML^{-1}T^{-2} = \begin{bmatrix} c \end{bmatrix} ML^{-3}$

$$ML^{-1}T^{-2} = [c]ML^{-3}$$

 $\rightarrow \lceil c \rceil = L^2 T^{-2}$

Como nos piden $\left[\frac{a}{c}\right]$, entonces

$$\left[\frac{a}{c}\right] = \left[\frac{a}{c}\right] \quad \left[\frac{a}{c}\right] = \frac{ML^{-1}T^{-4}}{L^{2}T^{-2}}$$

$$\therefore \left[\frac{a}{c}\right] = ML^{-3}T^{-2}$$

13. Calcula $\frac{X}{X^2}$ se sabe que F es fuerza, H es altura

y v es rapidez si la siguiente ecuación es dimensionalmente correcta: $Y = F + 1/2H \times v^2$.

- a) LT⁻¹
- b) $L^{3}T^{-3}$
- c) $L^{3}T^{-1}$

- d) L^2T^{-2}
- e) $L^{3}T^{-2}$
- 14. Si la expresión siguiente es dimensionalmente correcta, cuál es la ecuación dimensional A y α respectivamente?

$$d = \frac{1}{2}At^2 + \frac{1}{6}\alpha t^3$$

Si: **d**: distancia

t: tiempo

- a) LT; L⁻² b) LT⁻¹; LT⁻² c) L; T d) T⁻²; L² e) LT⁻²; LT⁻³

15. Se ha determinado que la velocidad de un fluido se puede expresar por la ecuación:

$$\mathbf{v} = \left[\frac{2P\mathbf{m}}{\mathbf{A}} + 2\mathbf{B}\mathbf{Y}\right]^{\frac{1}{2}}$$

Donde Pm es la presión manométrica del fluido e "Y" es la altura del nivel del fluido. Si la ecuación es dimensionalmente correcta, las magnitudes físicas de A y B, respectivamente, son:

UNI 2011-11

- a) Densidad y aceleración
- b) Densidad y velocidad
- c) Presión y densidad
- d) Fuerza y densidad
- e) Presión y fuerza

