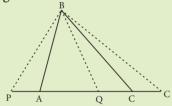


LINEAS NOTABLES ASOCIADOS A LOS TRIÁNGULOS

Ceviana

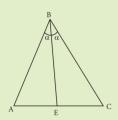
Segmento de recta cuyos extremos son un vértice del triángulo y un punto cualquiera del lado opuesto o su prolongación.



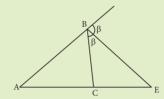
 \overline{BQ} : ceviana interior. \overline{BP} y \overline{BR} : ceviana exterior.

Bisectriz

Ceviana que biseca a un ángulo interior o exterior del triángulo.



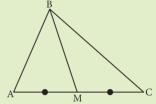
 $\overline{\text{BE}}$: bisectriz interior relativa a $\overline{\text{AC}}$



BE: bisectriz exterior relativa a AC

Mediana

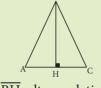
Segmento de recta que tiene por extremos a un vértice del triángulo y al punto medio, del lado opuesto.



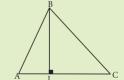
M: punto medio de AC
BM:mediana relativa a AC

Altura

Ceviana perpendicular al lado al cual es relativa.



 \overline{BH} : altura relativa a \overline{AC}

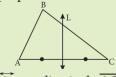


 \overline{BL} : altura relativa a \overline{AC}

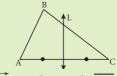
BM: altura relativa a CA

Mediatriz

Recta que biseca a un lado del triángulo en forma perpendicular.



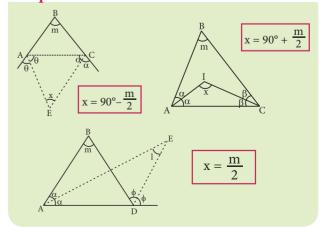
 \overrightarrow{L} : mediatriz de \overline{AC}



 \overrightarrow{L} : mediatriz de \overline{CA}

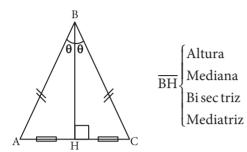
L: mediatriz relativa a \overline{AB}

Propiedades

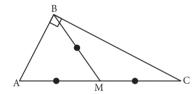


PROPIEDADES

1. En todo triángulo isósceles.



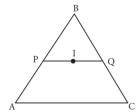
2. En todo triángulo rectángulo.



Si BM → mediana

$$\Rightarrow$$
 AM = MC = BM.

3. En todo triángulo, sus bisectrices interiores siempre se intersecta en un mismo punto llamado "incentro" por ser el centro de la circunferencia inscrita en el triángulo.

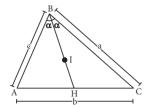


I: incentro y \overline{PQ} // \overline{AC}

$$PQ = AP + QC$$

además:

$$2p_{\triangle PBQ} = AB + BC$$

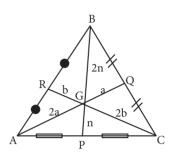


I: incentro

r: inradio

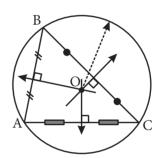
$$\frac{BI}{IH} = \frac{c+a}{b}$$

4. El punto de intersección de las medianas de un triángulo se llama baricentro.



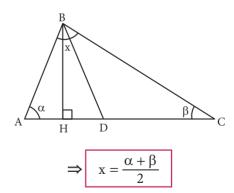
G: baricentro

5. El punto de intersección de las mediatrices se llama "circuncentro"



O: Circuncentro

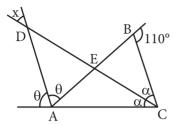
6. Si \overline{BD} es bisectriz del $\angle ABC$



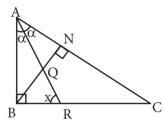
TRABAJANDO EN CLASE

Integral

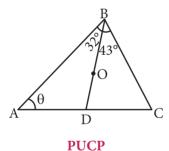
1. Calcula "x".



2. Calcula "x", si: QR = BR.



3. Si "O" es el circuncentro del triángulo ABC, calcula " θ "



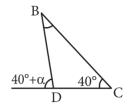
4. Calcula el complemento de " α "

Si BD es bisectriz



Resolución.

Piden $C\alpha$ = complemento de α = 90° - α Propiedades de triángulo:



Entonces: $m\angle BDA = 40^{\circ} + \alpha \dots (1)$ pero:

 \triangle ABD es isósceles, AB = BD, por lo tanto m \angle BAD = 40° + α .

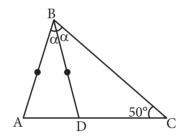
En el \triangle ABD se cumple:

$$40^{\circ} + \alpha + 40^{\circ} + \alpha + \alpha = 180^{\circ} \rightarrow \alpha = 100^{\circ}/3$$

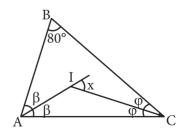
En (1).

$$90^{\circ} - \frac{100}{3} = \frac{170}{3} = C\alpha$$

5. Calcula el suplemento de " α ".

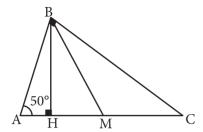


- 6. En un triángulo ABC se traza por B una paralela al lado \overline{AC} que corta a las prolongaciones de las bisectrices interiores de A y C en M y N, respectivamente. Calcula "MN", si AB = 6u y BC = 7u.
- 7. Calcula "x".



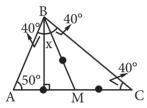
UNMSM

8. Si en el triángulo ABC, BH es altura y BM es mediatriz calcula m∠MBH



Resolución:

Piden m∠MBH = x, en el problema aplicamos la propiedad



entonces:

$$m\angle ABH = 40^{\circ}$$

$$m\angle BCA = 40^{\circ}$$

$$m\angle CBM = 40^{\circ}$$

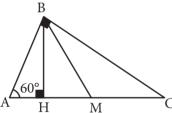
Por lo tanto:

$$m\angle ABH + m\angle HBM + m\angle MBC = 90^{\circ}$$

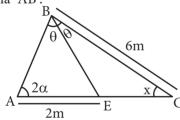
$$40^{\circ} + x + 40^{\circ} = 90^{\circ}$$

$$x = 10^{o}$$

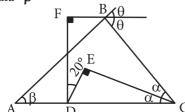
9. Si en el triángulo ABC, BM es mediana del triángulo ABC. Calcula m∠MBH.



10. Calcula "AB".

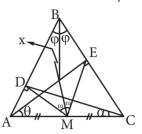


11. Calcula "β"



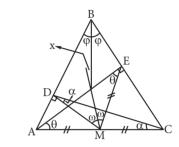
UNI

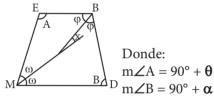
12. Calcula "x" en funcion de " θ " y " α "



Resolución:

Piden "x" en función de " θ " y " α " aplicamos la propiedad de la mediana

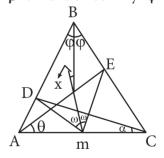




entonces el cuadrilátero DBEM.

$$\frac{90+\theta-(90+a)}{2} = \frac{\theta-\alpha}{2} = x$$

13. Calcula " β " en función de "x" y " ϕ "



14. Si en el triángulo ABC, "H" es el ortocentro, ""I" es el incentro, determina la relación entre α , θ y β

