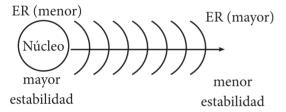


Materiales Educativos GRATIS

QUIMICA

TERCERO


PRINCIPIOS Y REGLAS DE LA CONFIGURACIÓN ELECTRÓNICA

INTRODUCCIÓN

La configuración electrónica consiste en distribuir a los electrones de manera sistemática dentro de la nube electrónica en diferentes estados energéticos (niveles, subniveles y orbitales) de acuerdo a ciertos principios y reglas.

Principio de Aufbau

Llamado también principio de energía relativa (ER), establece que los electrones distribuyen en orden creciente de la energía relativa de los subniveles.

Ejemplo: Determina ER de cada subnivel y ordénalo de acuerdo con su estabilidad.

$$ER = \underbrace{4s}_{4}, \underbrace{3p}_{4}, \underbrace{5s}_{5}, \underbrace{4f}_{7}, \underbrace{6d}_{8}, \underbrace{4p}_{5}, \underbrace{3d}_{5}, \underbrace{2s}_{2}$$

Ordenando de mayor a menor R.E. y de menor a mayor estabilidad.

6d, 4f, 5s, 4p, 3d, 4s, 3p, 2s

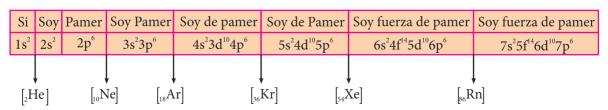
Recuerda: La estabilidad es inversamente proporcional a la energía relativa.

Nота

Cuando dos o más subniveles tienen igual energía relativa se llama subniveles degenerados. Para ordenarlos se considera el nivel energético.

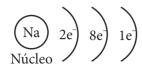
Ejemplo: ER =
$$\underbrace{3p, 3s, 4d, 4s, 5d}_{4}$$

igual (deg enerados)


Ordenando de menora mayor ER = 3s 3p4s 4d5d 4s, 4d, 5d ER = 2 (son degenerados)

Regla de Moller (regla de serrucho)

Niveles	1	2	3	4	5	6	7
Capas	K	L	M	N	0	Р	Q
S							
u	s²-	\rightarrow s ²	s ²	s ²	s^2	s ²	s² #
Ь			/ /	//	//	1/	1
n		b ₆ /	p^6	p ⁶	/p ⁶ //	p ⁶ //	p^6
i		P		1 /	1//	1/1	Ρ
v			d ¹⁰	d^{10}	d^{10}	d^{10}	
e				f ¹⁴	d^{10} f^{14}		
1				Ť.	T .		
e							
S							
#Máx de e¯	2	8	18	32	32	18	8
por nivel		0	10	32	32	10	0
	niveles niveles						
	completos incompletos					tos	
Capacidad	2	8	18	32	50	72	98
máxima	2	0	10	32	50	72	70


 $2n^2$ n = nivel

Forma lineal (regla práctica)

Ejemplo:

Determina la C.E. del soido (Z = 11) CE = $15^22s^22p^63s^1 = [Ne]3s^1$

Capa K L M
Nivel 1° 2° 3°
$$\frac{11}{1s} \frac{11}{2s} \frac{11}{2p} \frac{11}{3s} \frac{1}{3s}$$

Advertencia pre: La configuración electrónica de un elemento neutro se realiza en función a su Z; por que se cumple: $\{p^+ = e^- = Z\}$

Anomalías

La configuración electrónica de un elemento no debe terminar en d⁴N1 en d⁴. Si esto ocurriese, un electrón del último subnivel s deberá pasar al subnivel d.

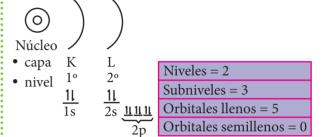
Ejemplo:

29Cu

C.E. =
$$1s^2 2s 2^2 p^6 3s^2 3p^6 4s^2 3d^9$$
 (inestable)

 $1s^22s^22p^63s^23p^64s^13d^{10}$ (estable) = [Ar] $4s^13d^{10}$

Caso especiales


C.E para un anión _ZE⁻¹

Primero se halla la cantidad de electrones del anión, luego se realiza la configuración electrónica con la cantidad total de e⁻.

Ejemplo: realiza la C.E. de $_8\mathrm{O}^{-2}$

Z = 8

 $e^{-} = 10$

C.E para un catión _ZE⁺

Primero se realiza la configuración electrónica como si fuera un átomo neutro, luego se quitan los e⁻ empezando del mayor nivel.

Ejemplo: Realiza la C.E de 22 Ti+2

$$CE = 1s^2 2s^2 p^6 3s^2 3p^6 \underbrace{4s^2 3d^2}_{}$$

$$1s^2 2s^2 2p^6 3s^2 3p^6 4s^0 3d^2 = [Ar]3d^2$$

Átomo paramagnético

Es aquel que es atraído por un campo magnético generado por un imán o electroimán. Su comportamiento se debe a la existencia de electrones desapareados.

Ejemplo: Cl Z = 17

C.E
$$\underbrace{\frac{1s^22s^22p^63s^2}{\text{llenos}}}^{\text{2}}\underbrace{\frac{3p^5}{\text{sustancia paramagnética}}}_{\text{orbital}}$$
semilleno

Átomo diamagnético

Es aquel que no es atraído por un campo magnético. Este comportamiento se debe a la existencia de electrones apareados.

Ejemplo: Ca Z = 20

C.E

$$\underbrace{\frac{1s^22s^22p^63s^23p^64s^6}{\text{orbitales llenos}}}_{\text{orbitales llenos}} \Rightarrow \boxed{\text{sustancia diamagnética}}$$

Trabajando en clase

Integral

- 1. Realiza la configuración electrónica (C.E) del calcio (Z = 20)
 - a) $1s^22s^22p^63s^23p^6$
 - b) $1s^22s^22p^63s^23p^64s^1$
 - c) $1s^22s^22p^63s^23p^{68}$
 - d) $1s^22s^22p^63s^23p^64s^2$
 - e) $1s^22s^22p^63s^23p^54s^3$

Rpta.:

d

2. Realiza la configuración electrónica de los siguientes elementos químicos:

$_{6}C$	=
₁₀ Ne	=
₁₂ Mg	=
₁₅ P	=
₂₆ Fe	=

- 3. Si la configuración electrónica de un átomo termina en 3p⁵, determina su número atómico (Z).
 - a) 18

- b) 16
- c) 17
- d) 15
- e) 19
- 4. Determina los números cuánticos del tercer electrón del uranio (₉₂U). UNALM – 2013-II
 - a) 1, 0, 0, -1/2
 - b) 2, 0, 0, -1/2
 - c) 2, 0, 0, +1/2
 - d) 2, 1, 1, +1/2
 - e) 1, 1, 0, +1/2

UNMSM

Determina el número atómico (Z) de un átomo que presenta los siguientes números cuánticos para un último e^- : 3, 1, 0, +1/2.

Resolución:

(n, l, m, s)

N.C(3, 1, 0, +1/2)

$$... 3p^{2} \frac{1}{-1} \frac{1}{0} \frac{1}{4}$$

$$1s^22s^22p^63s^23p^2$$

$$e^{-} = 14$$

$$Z = 14$$

- 6. Determina el número atómico (Z) de un átomo que, presenta en el último e-, los siguientes números cuánticos: 4, 1, -1, +1/2.
 - a) 30

b) 31

c) 32

d) 33

- e) 34
- 7. ¿Cuáles son los números cuánticos (n, l, m, s) del último electrón de un átomo neutro cuyo Z = 13? UNMSM - 2013-II
 - a) 3, 1, -1, -1/2
- b) 3, 1, 1, -1/2
- c) 3, 1, 1, -1/2
- d) 3, 1, 0, -1/2
- e) 3, 1, 0, +1/2
- 8. Indica cuántos niveles, subniveles, orbitales (llenos, semillenos y vacíos) presenta el vanadio. (Z = 33)

Resolución:

$$Z = e^{-} = 23$$

- Indica cuántos niveles, subniveles, orbitales (llenos, semillenos y vacíos) presenta el escandio (Z =21)
 - a) 4, 7, 10, 2, 3
- b) 4, 7, 9, 2, 3
- c) 4, 7, 10, 1, 4
- d) 4, 6, 10, 1, 2
- e) 4, 6, 9, 2, 4
- **10.** ¿Cuál es el valor de Z para un átomo cuyo último electrón tiene los números cuánticos: 3, 2, 0, –1/2? UNMSM 2009-I
 - a) 25

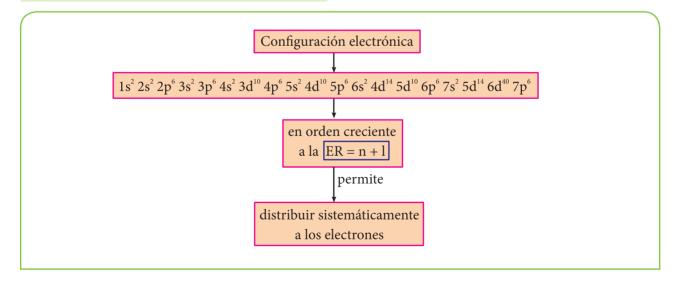
b) 28

c) 26

d) 34

- e) 30
- 11. ¿Cuáles son los cuatro números cuánticos del penúltimo electrón del azufre ($_{16}$ S)?

UNMSM - 2009-II


- a) (3, 1, -1, -1/2)
- b) (3, 1, +1, +1/2)
- c) (3, 1, -1, +1/2)
- d) (3, 1, 0, +1/2)
- e) (3, 1, 0, -1/2)

- 12. Señala la configuración electrónica del ion sulfuro ($_{16}$ S $^{-2}$) UNMSM 2012-I
 - a) [Ne] $3s^2 3p^6$
- b) [Ne] $3s^2 3p^3$
- c) [Ne] 3s² 3p⁴
- d) [Ne] $3s^3 3p^3$
- e) [Ne] $3s^2 3p^2$
- 13. ¿Cuál es la configuración electrónica del ₅₈Ce³⁺?
 - a) [Xe] $5s^2$
- b) [Xe] 6s¹
- c) [Xe] 5d¹
- d) [Xe] 4f¹
- e) [Xe] 5p⁶
- **14.** ¿Cuáles de las siguientes especies químicas son paramagnéticas? UNI 2011-II
 - I. $_{40}Zr^{4+}$
 - II. ₃₇Rb
 - III. 32Ge⁴⁺
 - a) I y III
- b) II y III
- c) Solo I
- d) Solo II
- e) Solo III

UNI

- **15.** Si la C.E. de un átomo termina en 3d⁵, determina su número másico si presenta 30 neutrones en el interior de su núcleo atómico.
 - a) 50
- b) 52
- c) 55
- d) 57
- e) 56

ESQUEMA FORMULARIO

