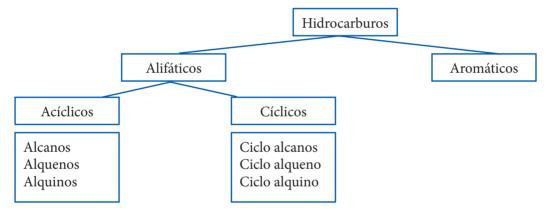


CARBUROS SATURA

HIDROCARBUROS

Los hidrocarburos son compuestos orgánicos binarios que contienen en su estructura interna, atómos de carbono e hidrógeno.


Ejemplo:

- CH.
- C_2H_6
- C_3H_2

$$CH_{2}$$
 — CH

 $CH_2 - CH_2$

Los hidrocarburos se pueden clasificar en:

PREFIJOS IUPAC

Para nombrar a los compuestos orgánicos se utilizan prefijos de acuerdo al número de átomos de carbono.

N° de carbono	Prefijo	N° de carbono	
1	Met	11 undec	
2	Et	11 dodec	
3	Prop	13 tridec	
4	But	14 tetradec	
5	Pent	15 pentadec	
6	Hex	20 eicos	
7	Hept	30 triacont	
8	Oct	40 tetracont	
9	Non	50 pentacont	
10	Dec	90 nonacont	

ALCANOS

Los alcanos son hidrocarburos alifáticos saturados debido a que presente solo enlaces simples entre sus átomos de carbono.

Se conocen también como parafinas, presentan poca afinidad química, hidrocarburos forménicos o hidrocarburos metánicos.

Hidrocarburos	Estructura	Nomenclatura IUPAC	Fórmula global
ALCANOS (Parafinas)	-C G C - (((Sp³ Sp³ (Enlace simple)	Prefijo N° de carbono ANO	$C_nH_{2n} + 2$

Ejemplo:

 $CH_4 = Metano$

 $CH_3 = Etano$

 $CH_3 - CH_2 - CH_3 = Propano$

 $CH_3 - (CH_2)_2 - CH_3 = Butano$

 $CH_{3} - (CH_{2})_{3} - CH_{3} = Pentano (C_{5} - H_{12})$

 $CH_{3} - (CH_{2})_{4} - CH_{3}$ $CH_{3} - (CH_{2})_{5} - CH_{3}$ Heptano (C_7H_{16}) (23 atomos)

RADICALES ALQUINO (-R)

Al eliminar un hidrógeno de un alcano se obtiene un sustituyente alquilo (grupo alquino)

Hidrocarburo	Radical (R)
CH ₄ Metano	—CH ₃ Metil (m)
CH ₃ — CH ₃ Etano	$-CH_2 - CH_3$ Etil(e)
$CH_3 - CH_2 - CH_3$	$-CH_2 - CH_2 - CH_3$
Propano	Propil (p)
	$CH_3 - CH - CH_3$
	Isopropil
$CH_3 - CH_2 - CH_3 - CH_3$	-CH, -CH, -CH, -CH,
Butano	Butil (b)

Ejemplo:

b)
$$CH_3 - CH - CH_2 - CH_3$$

 CH_3
 $2 - metilbutano$

c)
$$CH_3 - CH_2 - CH - CH_2 - CH_3$$

 $CH_2 - CH_3$
 $3 - \text{etil pentano}$

5 — etil — 2,3 dimetil heptano

NOMENCLATURA IUPAC

1. Se elige la cadena más larga, contiene el mayor número de átomos de carbono enlazados, los que están fuera son los radicales alquilos.

- 2. Se empieza a enumerar por los sustituyentes más cercanos.
- Se nombra a los sustituyentes en orden alfabético, considerando la posición del carbono en la cadena principal.
- 4. Se nombra la cadena principal.

Ejemplos:

Nombrar las siguientes estructuras orgánicas.

$$\begin{array}{cccc} & CH_{_3} & CH_{_2}-CH_{_3} \\ | & | & \\ CH_{_3}-C-CH-CH_{_2}-CH_{_3} \\ | & \\ CH_{_3} \end{array}$$

3 — etil — 2,2 dimetilpentano

$$\begin{array}{c} CH_2-CH_3 \\ | \\ CH_3-CH-CH-CH_3 \\ | \\ H_3C-CH_2 \\ \hline \\ CH_3-CH-CH_3 \\ | \\ CH_3-CH-CH_3 \\ | \\ CH_3-CH_2 \\ \hline \end{array}$$

3 — 3 dimetil hexano

$$\begin{array}{c} \text{CH}_{3} \quad \text{CH}_{2} - \text{CH}_{3} \\ \text{c)} \quad \text{CH}_{3} - \text{C} - \text{CH}_{2} - \text{CH} - \text{CH}_{2} - \text{CH}_{2} - \text{CH}_{3} \\ \text{H}_{3}\text{C} - \text{CH}_{2}\text{H}_{3}\text{C} - \text{CH} - \text{CH}_{3} \\ \\ \text{ICH}_{3} \quad \text{CH}_{2} - \text{CH}_{3} \\ \text{2CH}_{3} \quad \text{C}_{4} \quad \text{CH}_{2} \quad \text{T}_{5} \quad \text{CH}_{6} \quad \text{CH}_{2} \quad \text{T}_{7} \quad \text{CH}_{2} \quad \text{R}_{8} \quad \text{CH}_{3} \\ \text{H}_{3}\text{C} - \text{CH}_{2} \quad \text{H}_{3}\text{C} - \text{CH} - \text{CH}_{3} \\ \end{array}$$

d)
$$CH_3 - C(H_3) - CH_2 - C(CH_3)_2 - C_3H_7$$

$$\begin{array}{cccc} \operatorname{CH_3} & \operatorname{CH_3} \\ | & | & | \\ \operatorname{CH_3} - \operatorname{C} - \operatorname{CH_2} - \operatorname{C} - \operatorname{CH_2} - \operatorname{CH_2} - \operatorname{CH_3} \\ | & | & | \\ \operatorname{CH_3} & \operatorname{CH_3} \end{array}$$

2,2,4,4 tetrametil heptano

Otros grupos alquilo

Isobutil	CH ₃ CH — CH ₂ — CH ₃
Sec-butil	$\begin{array}{c c} \operatorname{CH_3} - \operatorname{CH_2} - \operatorname{CH} - \\ & \operatorname{CH_3} \end{array}$
Ter-butil	CH ₃ CH3 — C — CH ₃
Isopentil	$\begin{array}{c} \operatorname{CH}_3 \\ \operatorname{CH} - \operatorname{CH}_2 - \operatorname{CH}_2 \\ \operatorname{CH}_3 \end{array}$
Neopentil	$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 - \text{C} \text{CH}_2 - \\ \text{CH}_3 \end{array}$
Ter-pentil	$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 - \text{CH2} - \text{C} - \\ \text{CH}_3 \end{array}$

f)
$$\frac{10}{8}$$
 $\frac{10}{m}$ $\frac{10}{8}$ $\frac{10}{m}$ $\frac{10}{m}$ $\frac{10}{8}$ $\frac{10}{m}$ $\frac{10}{8}$ $\frac{10}{m}$ $\frac{10}{8}$ $\frac{10}{m}$ $\frac{10}{8}$ $\frac{10}{m}$ $\frac{10}{8}$ $\frac{10}{m}$ $\frac{10}{8}$ $\frac{10}{m}$ $\frac{10}{m}$ $\frac{10}{8}$ $\frac{10}{m}$ $\frac{10}{8}$ $\frac{10}{m}$ $\frac{10}{m}$ $\frac{10}{8}$ $\frac{10}{m}$ $\frac{10}{$

5 – sec-butil – 8 – etil – 5 – isopropil – 2,7 – climetildecano

6-ter-butil-3-isopropil-2,6,7 trimetilnonano

PROPIEDADES FÍSICAS

A condiciones normales son:

- Gases: $C_1 C_4$ Líquido: $C_5 C_{15}$ Sólido: C_{16} más
- 1. Sus puntos de fusión y ebullición aumentan con el número de átomos de carbono.
- Son insolubles en agua, pero sí en los derivados orgánicos como éter, cloroformo, acetona.
- 3. Son menos densos que el agua $(0.42 < D_r < 0.95)$ su densidad también varía con las ramificaciones.
- Metano y Etano carecen de olor del propano al pentadecano. Tiene olor desagradable (olor a brasas o quemado), el resto carece de olor por su poca volatibilidad.
 - Presentan isómeros de cadena y de posición.

Destilación del petróleo

Fracción	Punto de Ebullición / (C°)	Cantidad de átomos carbono en la cader		Usos
	Hasta 40	1 - 5	Gas Licuado	
Gas Gasolina (Bencina)	40 - 180	6 - 10	Combustibles	
Querosene	180 - 230	11 - 12	Calefacción doméstica (parafina)	
Aceites ligeros	230 - 305	13 - 17	Motores Diesel y hornos a petróleo	
Aceites pesados	305 - 405	18 - 25	Lubricantes de Motores	
Vaselina	405 - 515	28 - 38	Cremas	
Alquitranes y Asfaltos	sobre 515	39	Pavimento	

PROPIEDADES QUÍMICAS

- Son poco reactivos; por ello se le denominan Parafinas (parum affionis: «poca afinidad»)
- Se obtienen por fuentes Naturales y también por métodos sintéticos.
 - Por fuentes naturales a partir del craking del petróleo y del gas natural.
 - Poe métodos sintéticos a partir de la síntesis de Kolbe y síntesis de Gringnard.
- Don reacción por sustitución, halogenación que se producen en presencia de la luz Solar, calor o peróxidos, además, de combustión, completa e incompleta y de oxidación, no adición.

REACCIÓN DE COMBUSTIÓN COMPLETA

$$C_3H_8 + O_2 \rightarrow CO_2 + H_2O + Energía$$

En la reacción completa de hidrocarburos se forman como productos el dióxido de carbono y el agua, y se libera una gran cantidad de calor.

REACCIÓN DE HALOGENACIÓN (Cl.; Br,)

$$\mathrm{CH_{3}CH_{3}} + \mathrm{Cl_{2}} \xrightarrow{\quad Luz \quad} \mathrm{CH_{3}CH_{2}Cl} + \mathrm{HCl}$$

La halogenación es una forma de reacción llamada sustitución muy propia de los alcanos, donde el halógeno sustituye a un átomo de hidrógeno.

Trabajando en clase

Integral

1. Nombrar:

$$\begin{array}{c} \operatorname{CH_3} - \operatorname{CH_2} - \operatorname{CH} - \operatorname{CH_2} - \operatorname{CH_2} - \operatorname{CH_3} \\ | \\ \operatorname{CH_3} \end{array}$$

$$\begin{array}{c}
CH_{3} - CH_{2} - CH - CH_{2} - CH_{2} - CH_{3} \\
\hline
CH_{3} & 3 - Metilhexano
\end{array}$$

$$\begin{array}{c} \text{CH}_{3} - \text{CH}_{2} - \text{CH}_{2} \\ \text{CH}_{2} \\ \text{CH}_{2} \\ \text{CH}_{3} - \text{CH}_{2} - \text{CH} - \text{CH}_{2} - \text{CH}_{3} \end{array}$$

3. Que nombre recibe el siguiente alcano:

$$\begin{array}{cccc} \text{CH}_{3} & \text{CH}_{3} \\ | & | & | \\ \text{CH}_{3} - \text{C} - \text{CH}_{2} - \text{C} - \text{CH}_{2} - \text{CH}_{2} - \text{CH} \\ | & | & | \\ \text{CH}_{3} & \text{CH}_{3} & \text{CH}_{3} - \text{CH} \\ | & | & | \\ \text{CH}_{3} & \text{CH}_{3} & \text{CH}_{3} - \text{CH} \\ \end{array}$$

4. Nombrar:

Nombrar:
$$\begin{array}{cccc} \mathrm{CH_3} & \mathrm{CH_3} \\ \mathrm{CH_3} & \mathrm{CH_3} \\ \mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CH} - \mathrm{CH} - \mathrm{CH_2} - \mathrm{CH_3} \\ \mathrm{CH_3} & \mathrm{CH_2} \\ \mathrm{CH_2} & \mathrm{CH_2} \end{array}$$

UNMSM

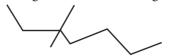
5. Determina la fórmula global del siguiente compuesto:

Resolución:

$$FG \begin{cases} CnH2n + 2 \\ C_{12}H_{26} \end{cases}$$

6. Determina la fórmula global del siguiente compuesto:

7. Determina la atomicidad del:


8. Nombrar:

4 - ETIL - 3,5 - DIMETILOCTANO

9. Nombrar:

10. Nombrar la siguiente estructura zig-zag

11. Qué compuesto es un alcano.

- a) C₂H₂ b) C₄H₆
- c) CH₄
- d) CH, COOH

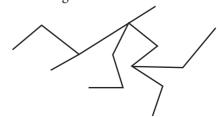
e) CH₃OH

UNI

12. Determina la atomicidad del siguiente hidrocarburo

Resolución:

$$C_{12}H_{26}$$
 Atomicidad
 $C_{12}H_{26}$ 12 + 26 = 38


13. Determina la atomicidad del siguiente hidrocarburo.

14. Nombrar:

$$\begin{array}{c} \text{CH}_{_{3}} \\ \text{CH}_{_{3}} - \text{CH} - \text{CH} - \text{CH} - \text{CH}_{_{3}} \\ \text{CH}_{_{2}} \\ \text{CH}_{_{2}} \\ \text{CH}_{_{3}} \\ \text{CH}_{_{3}} \\ \text{CH}_{_{2}} - \text{CH}_{_{2}} \end{array}$$

15. Nombrar el siguiente alcano

