

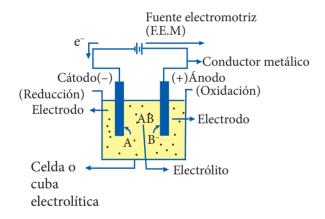
Materiales Educativos GRATIS

QUIMICA

QUINTO

ELECTROQUÍMICA

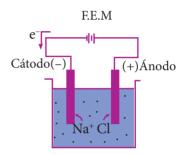
La electroquímica es parte de la química que se encarga de estudiar las transformaciones de la energía eléctrica en energía química o viceversa.


Electrólisis

Es el proceso en el cual se usa corriente eléctrica continua para producir una reacción Redox y gracias a esto se descompone una sustancia. La electrolisis es un proceso químico no espontáneo.

Celda electrolítica

Es el dispositivo donde la energía eléctrica se convierte en energía química.


Parte de una celda electrolítica

- 1. Electrólito: Es la sustancia que se reduce u oxida (generalmente), y que se encarga de lograr el circuito eléctrico. Los electrólitos son en su mayoría sustancias iónicas fundidas o en soluciones acuosas.
- 2. Electrodo: Es el material que se encarga de transmitir el flujo electrónico y es el lugar donde se produce la oxidación (ánodo) y reducción (cátodo).
 - A. Electrodos activos: si participan en la reaccicón química, como por ejemplo: Cu, Fe, Pb, Zn, etc.
 - B. Electrodos inertes: no participan en la reacción química, como por ejemplo: Pt, C, Cd, etc.

3. Conductor metálico: Es el medio por donde circulan los electrones (FEM).

Ejemplo de un proceso de electrólisis Electrólisis del NaCl fundido

Semireacciones:

Cátodo:
$$2Na_{(1)}^{+} + 2e^{-} \rightarrow 2\overset{\circ}{N}a_{(s)}$$

 $\overset{\circ}{A}$ nodo: $2Cl_{(1)}^{-} - 2e^{-} \rightarrow \overset{\circ}{C}l_{2(g)}$
 $\overset{\circ}{R}$ eacción neta: $2Na_{(l)}^{+} + 2Cl_{(l)}^{-} \rightarrow 2Na_{(s)} + Cl_{2(g)}$
 $2NaCl_{(l)} \rightarrow 2Na_{(s)} + Cl_{2(g)}$

Unidades eléctricas

1. Intensidad de corriente (I)

Es la cantidad de electricidad que atraviesa cierta sección en la unidad de tiempo:

$$I = \frac{Q}{t}$$

Donde:

Q: carga (Coulomb) t: tiempo (segundos) i: intensidad (amperio)

2. Coulomb (C)

Es la cantidad de electricidad que se necesita para que se deposite o libere un equivalente electroquímico o electroequivalente de alguna sustancia.

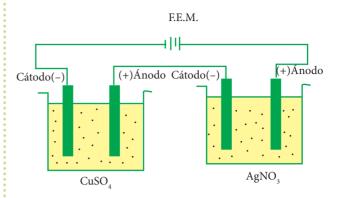
$$1C < > 1eq - q$$
 $Eq - q_{(sust)} = \frac{Eq - g_{(sus)}}{96\ 500}$

3. Faraday (F)

Es la cantidad de electricidad que se necesita para se deposite o libere un equivalente gramo de cierta sustancia.

$$1F \iff 1eq-g \iff 6,022 \times 10^{23} e^- \iff 96500 C$$

Leyes de Faraday


A. Primera ley

La masa que se libera o deposita en un electrodo es directamente proporcional a la cantidad de electricidad que atraviesa por la celda.

$$\frac{\text{Masa depositada}}{\text{o liberada}} = \frac{\text{P.E.Q.}}{96500} = \frac{\text{P.E.I.t}}{96500}$$

B. Segunda ley

Si conectamos dos o más celda en serie, las masas depositadas o liberadas son proporcionales a los pesos equivalentes.

$$\#Eq-g(Cu)=\#Eq-g(Ag)$$

$$\frac{\text{Masa (Cu)}}{\text{P.E.(Cu)}} = \frac{\text{masa(Ag)}}{\text{P.E.(Ag)}}$$

Nota:

- $#eq g = \frac{masa}{DF}$
- P.E. = $\frac{M}{\Theta}$ o P.E. = $\frac{P.A}{Val}$
- $M = \frac{\text{Nsto}}{\text{Vsol}}$

Trabajando en clase

Integral

- 1. Señala verdadero (V) o falso (F) según corresponda, acerca del proceso de electrólisis.
 - I. Es un proceso no espontáneo.
 - Al cátodo migran los cationes y ocurre la reducción.
 - III. Al ánodo migran los aniones y ocurre la oxidación.
 - a) FVV
- c) VFV
- e) VVF

- b) VVV
- d) FVF

Resolución:

- (V) es un proceso químico no espontáneo porque se necesita de la corriente eléctrica para que se produzca la reacción.
- II. (V): el cátodo es el polo negativo y ahí migran los cationes (+) y ocurre la reducción.

III. (V): el ánodo es el polo positivo y ahí migran los aniones (-) y ocurre la oxidación.

Rpta: VVV

- 2. De las siguientes proposiciones:
 - En una celda electrolítica el ánodo tiene carga eléctrica negativa y el cátodo tiene carga eléctrica positiva.
 - II. En el cátodo se lleva a cabo la reducción.
 - III. Al ánodo generalmente migran los aniones y ocurre la oxidación.

Son correctas:

- a) Solo I
- c) Solo III
- e) I, II y III

- b) Solo II
- d) II y III

- 3. ¿Cuántos faraday se necesitan al circular 965 coulumbs de carga eléctrica?
 - a) 0,1
- c) 1
- e) 0,001

- b) 0,01
- d) 10
- **4.** ¿Cuántas mol de electrones existen en 9650 coulombs de carga eléctrica?
 - a) 0,1
- c) 1
- e) 1000

- b) 0,01
- d) 10

UNMSM

- **5.** ¿Cuántos equivalentes de CuCl₂ se pueden descomponer con 28 950 coulombs?
 - a) 1,5
- c) 1,25
- e) 2,5

- b) 0,25
- d) 0,3

Resolución:

Sabiendo que:

$$1 \text{ eq-g} \rightarrow 96500 \text{ C}$$

$$x \rightarrow 28950 \text{ C}$$

$$\therefore x = \frac{28950}{96500} \times 1 \text{ eq} - g = 0.3 \text{ eq} - g$$

Rpta. d

- **6.** ¿Cuántos equivalentes de NaCl se pueden descomponer con 77 200 coulombs?
 - a) 0.8
- c) 0,3
- e) 1

- b) 0,4
- d) 0,7
- 7. ¿Cuántos equivalentes de NaCl se descomponen con 9,65 amperios durante 1 hora?
 - a) 0,036
- c) 0,18
- e) 0,004

- b) 0,36
- d) 0,09

UNI

- **8.** ¿Cuántos gramos de cobre se depositan en el cátodo al pasar 19 300 C sobre una solución con iones (Cu²⁺). mA(Cu = 63,5)
 - a) 63,5
- c) 19,05
- c) 6,35

- b) 38,1
- d) 12,7

Resolución:

Aplicando la primera ley de Faraday

$$mdepositada = \frac{mEq.Q}{96\,500}$$

$$\Rightarrow mEq(Cu^{2+}) = \frac{63.5}{2}$$

:. mdepositada =
$$\frac{63.5 \cdot 19300}{2.96500}$$
 = 6,35 g

Rpta.: e

- 9. ¿Cuántos gramos de aluminio se depositan en el cátodo a partir de una solución que contiene (Al³+) en 965 segundos por una corriente de 10 amperios? mA(Al = 27)
 - a) 0,9
- c) 2,7
- e) 4

- b) 1,8
- d) 3,6
- **10.** ¿Qué intensidad de corriente se debe usar durante 50 minutos sobre una sal para depositar en el cátodo 0,06 equivalente?
 - a) 10,5 A
- c) 3,51 A
- e) 3,86 A

- b) 2,57 A
- d) 1,93 A
- **11.** Calcula el volumen del gas que se desprende en el ánodo por electrólisis de HCl con 12 Faraday a condiciones normales.
 - a) 89,6 l
- c) 134,4
- e) 672,4

- b) 134,4
- d) 40
- **12.** ¿Cuántas horas aproximadamente serán necesarias para depositar 14,2 gramos de cobre (Cu²⁺) en el cátodo de una solución de CuSO₄ si la intensidad de corriente es 3A? (mA: Cu = 63,5)
 - a) 1/2
- c) 2d) 4
- e) 8

b) 1

Resolución:

$$mEq(Cu^{2+}) = \frac{63.5}{2} = 31.75$$

 \Rightarrow Aplicando la primera ley de Faraday 14,2 = $\frac{(31,75)(3)(t)}{96500}$

∴
$$t = 14386 \text{ s} \rightarrow \text{en horas} = \frac{14386}{3600}$$

aprox. = 4 h

- 13. ¿Cuánto tiempo se demora en depositar 390 gramos de (K^{+1}) en el cátodo si circulan 10A de intensidad (mA: K = 39)
 - a) 95 500 s
- c) 92 400 s
- e) 91 100 s

e) 6,19 h

- b) 95 600 s
- d) 93 200 s
- **14.** ¿Cuánto tiempo se necesitará para completar descomposición de 2 moles de agua con una corriente de 2A de intensidad?
 - a) 53,6 h b) 26,8 h
- c) 13,4 h
 - d) 59,2 h
- **15.** Se tiene cuatro celdas electrolíticas conectadas en serie, cuyos electrolitos son:

NaCl_(ac); AgNO_{3(ac)}; CuCl_{2(ac)}; CrCl_{3(ac)} Si en la primera celda se liberan en total 46 gramos de (Na⁺¹), entonces determina la masa total de los metales depositados.

- a) 314,17 g
- c) 319,5 g
- e) 316,5 g

- b) 320 g
- d) 315,28 g

Datos: mA: Na = 23; Ag = 108; Cu = 63.5; Cr = 52