
I. CONFIGURACIÓN ELECTRÓNICA

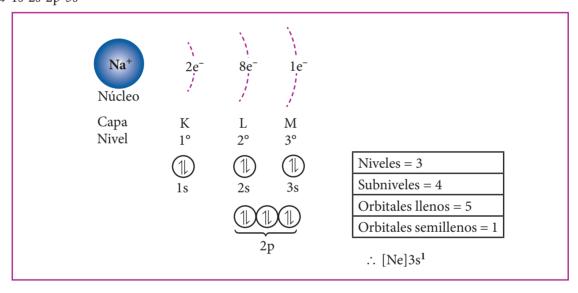
Es la forma cómo los electrones se distribuyen en los diferentes orbitales de un átomo. La configuración electrónica más estable o basal de un átomo es aquella en la que los electrones están en los estados de energía más bajo posible.

II. PRINCIPIO DE AUFBAU O DE LA CONSTRUCCIÓN ELECTRÓNICA

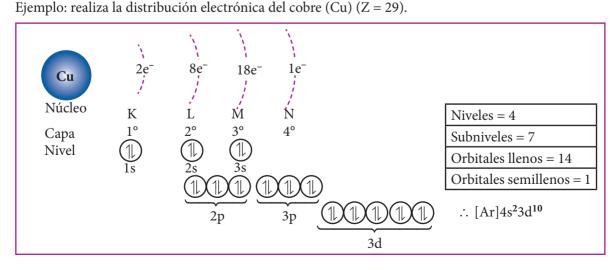
Establece que los electrones se distribuyen en los orbitales por orden creciente de sus energías. También es conocido como regla de Aufbau.

III.REGLA DE MÖLLER (REGLA DEL SERRUCHO)

NIVELES (N)	1	2	3	4	5	6	7
CAPAS	K	L	M	N	О	P	Q
SUBNIVELES	s ² —	\rightarrow s ²	\downarrow \downarrow \downarrow	$\int_{-\infty}^{\infty}$	s^2	s ²	s ²
		p ⁶	p ⁶	p ⁶	p ⁶	p ⁶	≠ p ⁶
			d^{10}	d^{10}	d^{10}	d^{10}	
				f^{14}	f^{14}		
NÚMERO MÁXIMO DE ELECTRONES POR NIVEL	2	8	18	32	32	18	8
		Niv		Niveles complejos			
CAPACIDAD Máxima	2	8	18	32	50	72	98


Siguiendo el orden de las flechas (Memotecnia).

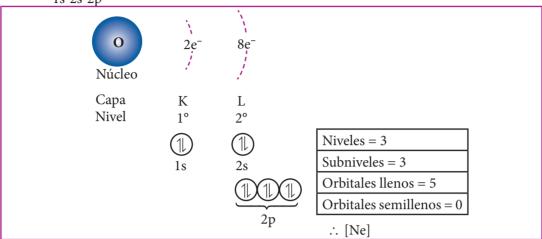
Otra forma: Kernel (simplificada)


si	Soy pamer	Soy pamer	Soy de pamer	Soy de pamer	Soy fuerza de pamer	Soy fuerza de pamer
1s ²	2s ² 2p ⁶	3s ² 3p ⁶	4s ² 3d ¹⁰ 4p ⁶	5s ² 4d ¹⁰ 5p ⁶	6s ² 4f ¹⁴ 5d ¹⁰ 6p ⁶	7s ² 5f ¹⁴ 6 ¹⁰ 7p ⁶
Гт	/ T.] [NT.1 [,	77] [Vol [
	Ie] [₁₀	Ne] [₁₈ A	[36]	Kr] [54	Xe] [₈₆	$[_{118}X]$

Ejemplos:

1. Determina la distribución electrónica del sodio (Z = 11). $\Rightarrow 1s^22s^22p^63s^1$

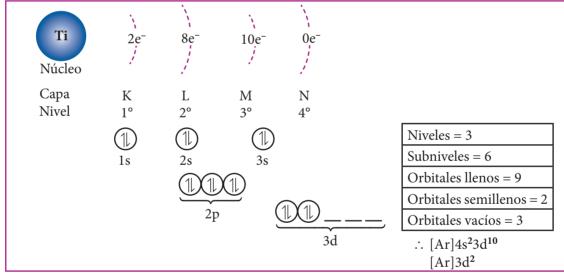
2. La distribución electrónica de un elemento no debe terminar en d⁴ ni en d⁹. Si esto ocurre, un electrón del último subnivel «s» pasaría al subnivel «d».


3. Para el caso de un anión: "E-

Se determina la cantidad de electrones del anión.

Se realiza la configuración electrónica.

Ejemplo: realiza la distribución electrónica del $_8\mathrm{O}^{2-}=10\mathrm{e}^-$


 $1s^22s^22p^6$

4. Para el caso de un catión: _zE⁺ Se hace la configuración del átomo neutro.

Se quitan los electrones del último nivel.

Ejemplo: realiza la distribución electrónica del 22 Tr²⁺.

- 1. ¿Cuál es el número atómico de un átomo cuya configuración electrónica termina en 3d³?
 - a) 20
- c) 23
- e) 15

- b) 22
- d) 18

Resolución

$$[_{18}Ar] 4s^23d^3$$

$$e^{-} = 2$$

$$Z = 23$$

2. Determina el número de electrones desapareados.

- a) 0
- c) 2
- e) 4

- b) 1
- d) 3

3. Determina el número de electrones en el último nivel.

$$^{71}_{x+3}A^{1-}_{x+4}$$

- a) 6
- c) 8
- e) 5

- b) 7
- d) 9
- **4.** Señala el número de electrones en el penúltimo nivel de energía.

$$^{2x+5}_{x+3}A_{40}$$

- a) 2
- c) 8
- e) 18

- b) 9
- d) 11

Trabajando en clase

- 1. Si la configuración electrónica (C.E.) de un elemento termina en 4s², calcula el número atómico (z).
 - a) 18
- d) 21

b) 19

e) 22

c) 20

Resolución:

C.E. ... $4s^2 z = (x)$

 $1s^22s^22p^63s^23p^64s^2$

 $e^- = 20 \rightarrow Z = 20$

- 2 Si la configuración electrónica de un elemento termina en 3p³, calcula el número atómico (Z).
 - a) 15

d) 12

b) 18

e) 17

- c) 12
- **3.** Realiza la configuración electrónica (C.E.) de los siguientes elementos:
 - a) $_{13}A\ell =$
 - b) $_{17}C\ell =$
 - c) $_{26}$ Fe =
 - d) $_{35}Br =$
 - e) $^{\circ}_{\circ}O =$
- **4.** Si la C.E. de un átomo termina en 4p² y posee 35 neutrones, determina su número másico (A).
 - a) 66

d) 67

- b) 65
- e) 69
- c) 68
- 5. Determina el número de orbitales llenos, semillenos y vacíos para Z = 23.
 - a) 10; 2; 2
- d) 9; 3; 3
- b) 10; 3; 2
- e) 9; 3; 1
- c) 10; 3; 3

Resolución:

Z = 23 $e^{-} = 23$ C.E.: $1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}4s^{2}3d^{3}$ $\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}$ D: 10

Orbital lleno: 10

Orbital semilleno: 3

Orbital vacío: 2

- **6.** Determina el número de orbitales llenos, semillenos y vacíos para Z = 32.
 - a) 15; 3; 0
- d) 14; 2; 2
- b) 15; 2; 0
- e) 15; 2; 1
- c) 14; 3; 1
- 7. ¿Cuál de los siguientes subniveles tiene menor energía relativa (E_R)?
 - a) 3p²
- d) 5p²
- b) 4s¹
- e) $7s^{1}$
- c) 3d⁶
- **8.** Los cuatro números cuánticos del penúltimo electrón del ₁₆S.
 - a) (3; 1; -1; -1/2)
- d) (3; 1; +1; +1/2)
- b) (3; 1; -1; +1/2)
- e) (3; 1; 0; +1/2)
- c) (3; 1; 0; -1/2)

UNMSM - 2009 - II

Resolución:

$${}^{z}_{16}S = 1s^{2}2s^{2}2p^{6}3s^{2}3p^{4}\frac{1}{1}\frac{1}{0}\frac{1}{+1}$$
 $e^{-} = 16$

 n, ℓ, m, s

#N.C. (Penúltimo e^-) = (3, 1, +1, +1/2)

- 9. Los números cuánticos (n, ℓ m, s) del último electrón de un átomo neutro cuyo Z = 13.
 - a) (3; 1; -1; -1/2)
- d) (3; 1; 0; +1/2)
- b) (3; 1; +1; -1/2)
- e) (3; 1; 0; -1/2)
- c) (3; 1; -1; +1/2)

UNMSM - 2013 - II

- 10. ¿Cuál es el valor de Z para un átomo cuyo último electrón tiene los número cuánticos (3; 2; 0; -1/2)?
 - a) 25
- d) 30
- b) 28
- e) 34
- c) 26

UNMSM - 2009 - I

- **11.** Calcula el número de electrones de valencia de un átomo que tiene 18 neutrones, y cuyo número de masa es 35.
 - a) 5

d) 3

b) 7

e) 6

c) 2

UNMSM - 2010 - II

- **12.** Señala la configuración electrónica del ion sulfuro (S^{-2}) . Dato: número atómico del azufre = 16.
 - a) [Ne] $3s^23p^6$
- d) [Ne] 3s²3p5⁶
- b) [Ne] 3s²3p³
- e) [Ne] 3s²3p⁶
- c) [Ne] $3s^23p^4$

UNMSM - 2012 - I

- **13.** El átomo de nitrógeno tiene la siguiente configuración electrónica: 1s²2s²2p³. Señala lo correcto.
 - a) Su número de masa es 7.
 - b) Todos sus orbitales están llenos.
 - c) La N.C. de su primer electrón son: (1, 0, +1/2)
 - d) El subnivel del mayor energía es 1s.
 - e) Tiene 7 protones.
- **14.** Señala la proposición correcta con respecto a la configuración electrónica del silicio: 1s²2s²2p⁶3s²2p².
 - a) Tiene 5 niveles de energía
 - b) Tiene 4 orbitales semillenos
 - c) El nivel de menor energía es 1s
 - d) Tiene 4 electrones de valencia
 - e) Es una sustancia diamagnética
- **15.** Determina la configuración electrónica del ₅₈Ce³⁺ es:
 - a) $[xe]5s^2$
- d) [xe]5f1²
- b) [xe]5s¹
- e) [xe]5p¹
- c) [xe]5d1

UNI - 2011 - II

Resolución:

 ${}_{58}\text{Ce}^{3+}\text{ C.E.} = \underbrace{1s^22s^22p^63s^23p^64s^23d^{10}4p^65d^24d^{10}5p}_{[_{54}\text{Xe}]} {}^{66}s^{2}4f^{0}5d^{1}$

$$e^{-} = 55$$

C.E. $[_{54}Xe]_{4}f^{1}$

- **16.** Señala la configuración electrónica del ₂₄Cr⁺².
 - a) $[Ar]4s^23d^2$
- d) [Ar]3d⁵
- b) [Ar]3d⁴
- e) [Ar]3d²
- c) $[Ar]4s^13d^1$
- **17.** Un átomo tiene 9 electrones en su capa M. Determina su número atómico.
 - a) 20
- d) 23

b) 22

e) 25

- c) 21
- **18.** ¿Cuál de las siguientes especies químicas son paramagnéticas?

I.
$$_{40}Zr^{4+}$$

- a) I y II
- d) Solo II
- b) II y III
- e) Solo III
- c) Solo I

UNI – 2011 – II