ANÁLISIS DIMENSIONAL

MAGNITUD FÍSICA

Es toda característica o propiedad de la materia o fenómeno físico que puede ser medido con cierto grado de precisión, usando para ello una unidad de medida patrón convencionalmente establecido. Las magnitudes físicas, se clasifican en:

I. Según su origen

Para resolver el problema que suponía la utilización de unidades diferentes en distintos lugares del mundo, en la XI Conferencia General de Pesos y Medidas (París, 1960) se estableció el Sistema Internacional de Unidades (SI).

1. Magnitudes fundamentales

En primer lugar, se eligieron las magnitudes fundamentales y la unidad correspondiente a cada magnitud fundamental. Una magnitud fundamental es aquella que se define por sí misma y es independiente de las demás, además sirven de base para fijar las unidades y en función de las cuales se expresan las demás magnitudes (masa, tiempo, longitud, etc.).

2. Magnitudes derivadas

En segundo lugar, se definieron las magnitudes derivadas y la unidad correspondiente a cada magnitud derivada. Una magnitud derivada es aquella que se obtiene mediante expresiones matemáticas a partir de las magnitudes fundamentales (densidad, superficie, velocidad).

II. Según su naturaleza

1. Magnitudes escalares

Son aquellas que quedan perfectamente definidas mediante un número real y su correspondiente unidad de medida. Ejemplo: –10 °C; 5 kg; etc.

2. Magnitudes vectoriales

Son aquellas que, además de conocer su valor y unidad, se requiere de su dirección para quedar perfectamente definidas. Ejemplo:

- La velocidad
- La aceleración
- La fuerza, etc.

SISTEMA INTERNACIONAL DE UNIDADES (SI)

Se instauró en 1960, reconociéndose, inicialmente, seis unidades físicas básicas. En 1971 se añadió la séptima unidad básica: el mol. Actualmente considera siete magnitudes fundamentes y dos auxiliares.

Magnitud	Dimensión	Unidad	Símbolo de la unidad
Longitud	L	metro	m
Masa	M	kilogramo	kg
Tiempo	Т	segundo	s
Intensidad de corriente eléctrica	I	ampere	A
Temperatura	θ	kelvin	K
Intensidad luminosa	J	candela	cd
Cantidad de sustancia	N	mol	mol

Ecuación dimensional

Es aquella igualdad matemática que sirve para relacionar las dimensiones de las magnitudes físicas fundamentales, para obtener las magnitudes derivadas y fijar así sus unidades además, permite verificar si una fórmula o ley física, es o no dimensionalmente correcta.

Notación

Se usan un par de corchetes [] se lee "Ecuación dimensional de..." Ejemplo:

[B] Ecuación dimensional de la magnitud física B

Símbolos, dimensiones y unidades de magnitudes físicas derivadas

Magnitud	Unidad	Dimensiones	Unidades en término de las unidades básicas del SI
Aceleración	m/s ²	LT^{-2}	m/s ²
Aceleración angular	rad/s²	T^{-2}	s ⁻²
Área	m^2	L^2	m ²
Densidad	kg/m³	$\mathrm{ML}^{\scriptscriptstyle{-3}}$	kg/m³
Desplazamiento distancia	m	L	m
Frecuencia angular Velocidad angular	rad/s	T-1	s ⁻¹
Energía	joule (J)	ML^2T^{-2}	kg.m²/s²
Fuerza	newton (N)	MLT ⁻²	kg.m/s²
Frecuencia	hertz (Hz)	T^{-1}	S ⁻¹
Calor	joule (J)	ML^2T^{-2}	kg.m²/s²
Momento lineal o cantidad de movimiento	kg.m/s	MLT ⁻¹	kg.m/s
Periodo	S	Т	S
Potencia	watt $(W) = (J/s)$	MLT ⁻³	kg.m²/s³
Presión	$pascal (Pa) = (N/m^2)$	$ML^{-1}T^{-2}$	kg/m.s²
Torque o momento de torsión	N.m	$\mathrm{ML}^2\mathrm{T}^{-2}$	kg.m²/s²
Velocidad	m/s	Lt ⁻¹	m/s
Volumen	m³	L^3	m^3
Trabajo mecánico	joule (J) = (N.m)	ML^2T^{-2}	kg.m²/s²
Caudal	m³/s	L^3T^{-1}	m³/s

Propiedades de las ecuaciones dimensionales

1º Todos los números, ángulos, funciones trigonométricas, logarítmicas o exponencionales son adimensionales por lo que su ecuación dimensional es la unidad.

$$[\cos 74^{\circ}] = 1 \Rightarrow [\sqrt{5}] = 1$$
$$[2\pi] = 1$$
$$[\sqrt{3} - \frac{\neq}{2}] = 1$$

2º Solo se podrá sumar o restar magnitudes de la misma especie y el resultado de dicha operación será igual a la misma magnitud.

Ejemplo:

$$4 \text{ m} + 3 \text{ m} = 7 \text{ m}$$

$$[4 \text{ m}] + [3 \text{ m}] = 7 \text{ m}$$

$$L + L = L$$

Eiemplo:

$$77 \text{ s} - 7 \text{ s} = 70 \text{ s}$$

$$[77 \text{ s}] - [7 \text{ s}] = [70 \text{ s}]$$

$$T - T = T$$

Si una formula física es dimensionalmente correcta u homogénea, todos los términos de dicha ecuación deben ser dimensionalmente iguales. (Principio de homogeneidad)

Así, sea la fórmula física:

$$J + I = C - R$$

$$[J] = [I] = [C] = [R]$$

TRABAJANDO EN CLASE

Integral

1. Determina la fórmula dimensional de "x".

$$A = \sqrt{\frac{B}{x}}$$

B: velocidad; A: frecuencia

Resolución:

$$x = \frac{B}{A^2}$$

$$[x] = \frac{[B]}{[A]^2} = \frac{LT^{-1}}{(T^{-1})^2} = LT$$

2. Determina la fórmula dimensional de "x".

$$V = \sqrt{X C}$$

V: velocidad; C: aceleración

3. Determina [W] si la energía de un gas se obtiene mediante:

$$U = K \frac{WT}{2}$$

K: Número; T: Temperatura

4. Determina [K] si se sabe que la siguiente expresión es dimensionalmente correcta

$$C = \sqrt{\frac{PK^2}{Dd}}$$

Datos:

C: velocidad

P: presión

D: densidad

d: diámetro

UNMSM

5. Determina la dimensión "x" si la siguiente la expresión es dimensionalmente correcta:

$$\left(Tan30^{o}\right) + Ln\left(\frac{F}{PA}\right)^{Sen60^{o}} = \frac{Xva}{A^{2}W^{3}}$$

F: fuerza

A: superficie

a: aceleración

w: velocidad angular

p: presión

v: velocidad

Resolución:

$$\left[\text{Tan30}^{\circ}\right] = \left[\text{Ln}\left(\frac{F}{\text{PA}}\right)^{\text{Sen60}^{\circ}}\right] = \left[\frac{XVa}{A^{2}W^{3}}\right]$$

$$\Rightarrow 1 = \left[\frac{XVa}{A^2W^3} \right]$$

$$[x] = \left[\frac{A^2W^3}{Va}\right] = \frac{(L^2)^2.(T^{-1})^3}{LT^{-1}.LT^{-2}} = L^2$$

6. Si el impulso es I = F.t, determina [Z] para que la siguiente ecuación sea dimensionalmente $I = \frac{W}{Z} + mZ \text{ correcta.}$ Donde:

W: trabajo

F: fuerza

M: masa

t: tiempo

7. Calcula a + b + c si la fuerza que soporta un cuerpo sumergido en un líquido es:

$$F = KD^a g^b V^c$$

Donde: K es un número

D: densidad; V: volumen; g: aceleración

8. Determina [P] en la ecuación:

$$4P = \frac{m(V + K)^2}{2t}$$

Donde:

m = masa, V = Velocidad; t = tiempo

9. Determina $\left| \frac{\beta}{\alpha} \right|$ si:

$$E = \frac{v^2}{\alpha} + \frac{F}{\beta}$$

Donde:

E = trabajo, v = velocidad, F = fuerza

10. El flujo sanguíneo (Q) de un hombre depende del radio interno (r) de la arteria aorta, de la gradiente de presión arterial (P/L) y de la viscosidad (u) de la sangre. Escribir la fórmula del flujo sanguíneo si: Q = volumen / tiempo P/L = presión / longitud

 $\mu = ML^{-1} T^{-1}$

11. Determina la dimensión del producto ABC a partir de la siguiente ecuación:

$$AB + BC + AC = P^2$$

Donde P: presión

12. Determina las unidades de las constantes "a" y "b", respectivamente, si la siguiente ecuación empírica representa la ecuación de estado de muchos gases:

$$\left[P + a\left(\frac{n}{v}\right)^{L}\right]\left[\frac{v}{n} - b\right] = RT$$

Donde:

P: presión

V: volumen

n: número de moles

13. Si la frecuencia (f) de oscilación de un péndulo simple depende de su longitud (L) y de la aceleración de gravedad (g) de la localidad, determina una fórmula empírica para la frecuencia.

Nota: k = constante de proporcionalidad numérica.

14. Calcula "x + y" para que la siguiente ecuación sea dimensionalmente correcta:

$$H = \frac{a^2b^x}{2C^y}Sen\theta$$

Donde:

H: altura; b: radio; a: rapidez; c: aceleración

UNI

15. Determina la dimensión de S en la siguiente expresión:

$$S = \sqrt{\left(\frac{2E}{m}\right) - 2ah}$$

Donde:

E: energía; a: aceleración; h: altura: m: masa. Resolución

$$[s] = \sqrt{\frac{2E}{m}} = [2ah]$$

$$[s] = \sqrt{[2ah]}$$

$$[s] = \sqrt{LT^{-2}.L} = LT^{-1}$$

[s]: velocidad

16. Determina la dimensión de "y" si "a" es una aceleración y "f" es una frecuencia.

$$y = \frac{x^2 \cdot (x - a)}{f Cos(\alpha)}$$

- 17. Determina la dimensión de "x" si el producto "xy" tiene unidades de masa $e^{ax^{-1}yz} = \alpha$ z: densidad volumétrica de masa.
- 18. Indica la dimensión de la cantidad "x" si la siguiente ecuación es dimensionalmente correcta:

$$\frac{{a_0}^2}{2WR_1p} = \frac{XTan(105^\circ)}{p_1 + p_2}$$

Se sabe que:

a₀ es una aceleración

R₁ es un radio

W es una velocidad

p₁, p₂ y p son densidades de masa